
Using COBOL
at the NIH
Computer Center

September 1998

National Institutes of Health
Center for Information Technology
NIH Computer Center
12 South Drive MSC 5607
Bethesda, Maryland 20892-5607

Publication No. CIT003

Using COBOL at the NIH Computer Center – September 1998

Using COBOL at the NIH Computer Center (9/98) i

Table of Contents

1 INTRODUCTION... 1
1.1 Procedure Names... 2

2 DCB INFORMATION FOR SYSOUT DATA SETS.. 4

3 COBOL PUBLICATIONS... 5

4 COBOL/MVS COMPILER OPTIONS .. 7

5 COMPILING AND RUNNING COBOL/MVS PROGRAMS 11
5.1 Using the Compiler ... 11
5.2 Using the Binder.. 12
5.3 Creating and Using Object Modules ... 14
5.4 Using the Loader ... 16

6 STORING AND USING PROGRAMS IN USER LIBRARIES............................... 19
6.1 Storing Programs in Single-Member User Libraries... 20
6.2 Storing Programs In Multi-Member User Libraries.. 22
6.3 Using Programs from User Libraries .. 24
6.4 Link-editing from a User Library (Using the Binder)... 26

7 COBOL/MVS PROGRAMMING AND RUNNING TIPS 29
7.1 Restrictions.. 29
7.2 Program Design and Efficiency .. 29

7.2.1 File Manipulation .. 29
7.2.2 Data Definition.. 30
7.2.3 Procedure Division.. 31

7.2.3.1 Carriage Control .. 32
7.3 Hints .. 32
7.4 Data Formats for Inter-Language Communication ... 35

Using COBOL at the NIH Computer Center (9/98) 1

1 INTRODUCTION
This manual describes the use of the COBOL/MVS programming language at the NIH
Computer Center. This manual is intended to give programmers the COBOL information
they need in order to create new programs and to maintain programs running on the MVS
South System. The information in this manual should be used in conjunction with the NIH
Computer Center User’s Guide, Batch Processing and Utilities at NIH, and the manuals
described in Section 3.

The COBOL/MVS programming language receives full (Level 1) support. Questions on
COBOL should be directed to the Technical Assistance and Support Center (TASC), either
by phone at (301) 594-3278 or by submitting a Problem Tracking Report (PTR). There are
several methods of submitting a PTR:

�� World Wide Web

Users with NIHnet or Internet connections can submit a PTR through the World Wide
Web. To access the PTR system, connect to:

http://datacenter.cit.nih.gov/ptr.html

�� Electronic Mail

PTRs can also be submitted to the Computer Center by sending electronic mail to the
WYLBUR initials PTR or the Internet address PTR@CU.NIH.GOV. Mailed PTRs must
have a valid SUBJECT header containing the submitter’s name and telephone number,
and be of the form

Subject: PTR FROM name TELEPHONE phone-number

For example:

Subject: PTR FROM Tom Jones TELEPHONE 6-1111

�� ENTER PTR

Users can submit a PTR through WYLBUR’s ENTER PTR command.

Changes that affect the use of the COBOL/MVS language will be fully tested and pre-
announced through the Interface newsletter. For a full description of Level 1 support, see the
NIH Computer Center User’s Guide.

COBOL (COmmon Business Oriented Language) is a programming language, similar to
English, which is designed for data processing oriented programming applications. The
Computer Center uses the IBM COBOL/MVS compiler and libraries. This compiler is
compatible with the American National Standard for COBOL. It supports the 1985 standards

2 Using COBOL at the NIH Computer Center (9/98)

and the 1989 addendum to the 1985 standards; 1985 standards is the default. Language
Environment for OS/390 & VM (LE) provides the run-time environment for COBOL/MVS.

There is a Federal Information Processing Standard (FIPS) for this language. Certain special
features and extensions of the language fall outside the FIPS standard. Programs written
using only FIPS approved features can be transported more readily between federal
installations and different vendors’ mainframes. Federal policy encourages the use of features
within FIPS standards. COBOL/MVS statements not conforming to the 1985 FIPS COBOL
standards are identified in the manual IBM COBOL for MVS & VM Compiler and Run-Time
Migration Guide, GC26-4764.

For information on Year 2000 COBOL Conversion Services, go to:
http://silk.nih.gov/silk/year2000/

1.1 Procedure Names

Note: the Binder now performs the link-editing functions previously performed by
the Linkage Editor.

The procedure names used in this manual are:

CBL3COMP
CBL3OBJ
CBL3LKGO
CBL3LDGO
CBL3LKMM
CBL3LKSM
CBL3CALL

Each procedure name follows the pattern:

lllvffff

where “lll” is the language prefix (CBL for COBOL)
 “v” is the version (3 for COBOL)
 “ffff” is the function

The meaning of each function is given below:

COMP compilation only

OBJ compile and store object module

Using COBOL at the NIH Computer Center (9/98) 3

LKGO use the Binder (formerly the Linkage Editor) and execute program

LDGO use the Loader and execute program

LKMM use the Binder to store a link-edited load module into an existing
multi-member PDS

LKSM use the Binder to store a link-edited load module into a new single-
member PDS

CALL execute a fully link-edited load module

In the examples throughout this manual, the following conventions apply:

“aaaa” the account number

“iii” the programmer’s registered initials

“dsname” name of data set

“progname” name of program stored in partitioned data set (PDS)

“fileser” volume serial number of disk where data set is located; required only
if the data set is not cataloged

“primary” primary quantity requested in the SPACE parameter

“blocks” number of directory blocks

“stepname” name of step which executes the procedure; should be unique within
a job

“ddname” user-supplied ddname; should be unique within job step

4 Using COBOL at the NIH Computer Center (9/98)

2 DCB INFORMATION FOR SYSOUT DATA SETS
Listed in the figure below are the default record formats and blocksizes for all SYSOUT data
sets in the COBOL/MVS procedures.

PROCEDURE
NAME

STEP NAME DD NAME DEFAULT
RECFM/BLKSIZE

CBL3COMP

COMP SYSPRINT FBA 121

CBL3LKGO LOAD SYSPRINT FA 121
 GO SYSOUT FBA 120
 PUNCH

F 80

CBL3OBJ COMP SYSPRINT

FBA 121

CBL3LKSM LOAD SYSPRINT

FA 121

CBL3LKMM LOAD SYSPRINT

FA 121

CBL3CALL GO SYSOUT FBA 120
 PUNCH

F 80

CBL3LDGO GO SYSLOUT FBSA 121
 SYSOUT FBA 120
 PUNCH F 80
 SYSDBOUT

FA 121

Figure 1. SYSOUT DCB Information for COBOL/MVS Procedures

Using COBOL at the NIH Computer Center (9/98) 5

3 COBOL PUBLICATIONS
The CIT Technical Information Office distributes general information, technical and vendor
publications and certain software to the user community. Using COBOL at the NIH
Computer Center is one of the many publications available online through the World Wide
Web at:

http://datacenter.cit.nih.gov/cfb.pub.txt.html

Users may order publications in the following ways:

�� Using the World Wide Web, visit:

http://livewire.nih.gov/publications/publications.asp

and select the option for ordering publications online. Some publications may not be
available through this ordering system.

�� Sign on to WYLBUR and use the ENTER PUBWARE command to order publications.

�� If you cannot order a publication online, you may place an order by visiting TASC in
Building 12A or by telephone.

The following manuals relevant to COBOL/370 can be ordered:

COBOL for MVS & VM Compiler & Run-Time Migration Guide, GC26-4764

This publication provides information to help users move their run time to IBM
Language Environment for MVS & VM (Language Environment) and to upgrade
their source programs to COBOL for OS/390 & VM or COBOL for MVS & VM.

Language Environment for OS/390 & VM Debugging Guide & Run-Time Messages, SC28-
1942

This IBM document provides assistance with detecting and locating programming
errors that occur during run time under Language Environment. It can help establish a
debugging process to analyze data and narrow the scope and location of where an
error might have occurred.

IBM COBOL Report Writer Precompiler Programmer Manual, SC26-4301

This publication provides information about the Report Writer statements. It is
intended for programmers engaged in the writing of new programs using Report
Writer or the maintenance of old ones.

IBM COBOL for MVS & VM Language Reference, SC26-4769

This manual describes the language elements of the COBOL language.

6 Using COBOL at the NIH Computer Center (9/98)

IBM COBOL for MVS & VM Programming Guide, SC26-4767
This manual describes the techniques and nuances of programming with the COBOL
Language. It explains how to compile, link-edit and execute or compile and load a
COBOL program with COBOL/MVS.

Interface

This is a series of technical notes for users, published by the Computer Center. All
changes to Computer Center standards and facilities are announced in this
publication.

Using COBOL at the NIH Computer Center (9/98) 7

4 COBOL/MVS COMPILER OPTIONS
The standard options generated for the COBOL/MVS compiler are listed below.

APOST Indicates to the compiler that the apostrophe (‘) is acceptable
as the character to delineate literals, and to use that character
in the generation of figurative constants.

BUFSIZE(4096) Specifies the amount of the SIZE parameter to be reserved
for compiler data set buffers.

DATA(31) (31) Above/below 16-megabyte line or from unrestricted
storage.

FLAG(I) Print all warning diagnostics as well as error diagnostics.

LANGUAGE(EN) Indicates the output will be printed in mixed case English.

LINECOUNT(60) Number of lines printed per page of source listing.

NOADV The first byte must be reserved for the carriage control
character for files with WRITE ADVANCING.

NOAWO APPLY WRITE-ONLY clause will not be in effect.

NOCMPR2 Generate code that conforms to COBOL 85 standards.

NOCOMPILE(S) Causes normal compilation with both syntax checking and
object code generation.

NOCURRENCY Specifies that no alternate default currency symbol will be
used; the default currency symbol is the dollar sign ($).

NODBCS Will not cause the compiler to use X’OE’ and X’OF’ (SI) as
shift codes.

NODECK No object deck will be punched.

NODUMP The compiler should produce an informative message rather
than a dump if it encounters a D-level (“disaster”) error
condition during its processing.

NODYNAM Indicates that subprograms will be link-edited with the
calling program into a single load module.

NOEVENTS Does not produce/update event files.

8 Using COBOL at the NIH Computer Center (9/98)

NOEXIT Will not allow the compiler to accept user-supplied modules

in the place of SYSIN, SYSLIB (or copy library), and
SYSPRINT.

NOFASTSRT Only conforms to the COBOL 85 Standard and does not
allow DFSORT to perform input and output.

NOFLAGMIG Non-ANSI 85 standard statements will not be flagged.

NOFLAGSAA No COBOL/MVS System Application Architecture flagging.

NOFLAGSTD Level or subset of COBOL will not be specified.

NOLIB Indicates that no COPY or BASIS request will be part of the
COBOL/MVS source input stream. If library facilities are to
be used, LIB must be specified at compilation time.

NOLIST Assembler Language listing of procedure division is not to
be generated.

NOMAP Glossary and global tables are not to be printed.

NONAME Indicates that programs compiled in a batch environment will
be link-edited into a single load module.

NONUMBER Indicates that line numbers have not been recorded in the
source text and that the compiler should generate source
numbers for use with error messages as well as in LIST,
OFFSET, XREF.

NOOFFSET Condensed listing of PROCEDURE DIVISION is not to be
listed.

NOOPTIMIZE Indicates that optimized object code is not to be generated.

NORENT Generates a non-reentrant object module.

NOSSRANGE Will not generate code to check subscript.

NOTERM Indicates that progress and diagnostic messages are not to be
printed on the SYSTERM terminal data set.

NOTEST Indicates that the program cannot be debugged at the
terminal using the Interactive Debug Facility.

Using COBOL at the NIH Computer Center (9/98) 9

NOVBREF A brief summary/cross reference of verbs used in the source
program and a count of how often each verb appeared will
not be provided.

NOWORD Does specify alternate reserved word table.

NOXREF A sorted cross-reference of data and procedure names is not
to be listed.

NUMPROC(PFD) Bypasses invalid sign processing.

OBJECT Places generated object code on disk or tape to be later used
as input for the Binder.

OUTDD(SYSOUT) Indicates that SYSOUT is the ddname of the file to be used
for debug output and for data when SYSOUT is specified,
either implicitly or explicitly, in a DISPLAY statement.

SEQUENCE Compiler will check card sequence of source module.

SIZE(1024000) Specifies the amount of main storage available to the
compiler.

SOURCE Source module is to be listed.

SPACE(1) Single space compiler listing.

TRUNC(OPT) Applies to the movement of COMPUTATIONAL arithmetic
fields. When NOTRUNC is specified, movement of items is
dependent on the size of the field (halfword, fullword).

ZWB Instructs the compiler to strip the sign from a signed external
decimal field when comparing this field to an alphanumeric
field. If ZWB is specified, the signed external decimal field
is moved to an intermediate field, in which its sign is
removed before it is compared to the alphanumeric field.
NOZWB should be used when, for example, input numeric
fields are to be compared with spaces.

For further information on the above options and possible other options, refer to the IBM
COBOL for MVS & VM Programming Guide, SC26-4767.

If any options are to be changed, the user must specify them in the EXEC statement. The
OPTIONS symbolic parameter may be used in place of the PARM parameter. The use of the
OPTIONS symbolic parameter is illustrated in the examples in this manual.

10 Using COBOL at the NIH Computer Center (9/98)

For those who must override or augment the cataloged procedures, the stepnames used in the
procedure are given in each section.

Using COBOL at the NIH Computer Center (9/98) 11

5 COMPILING AND RUNNING COBOL/MVS PROGRAMS
The procedures in this section are used to compile, link-edit (using the Binder), and execute
COBOL/MVS programs.

5.1 Using the Compiler
The COMP procedure provides the user with a one-step procedure to compile COBOL/MVS
source code for diagnostic messages, and, if compilation is successful, to prepare the input
for further processing (e.g., the LKGO procedure). This procedure stores the output of the
compiler into a temporary data set to be used later in the job and then deleted.

Symbolic Parameters for CBL3COMP

Required Value to be supplied

None

None

Optional Value to be supplied

OPTIONS=parms Compiler parameters

The internal stepname for the CBL3COMP procedure is COMP.

Example 1:
To compile only.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)

Example 2:
To compile and obtain a procedure division map (Assembler language listing) and a
data division map.

//stepname EXEC CBL3COMP,OPTIONS=‘LIST,MAP’
//COMP.SYSIN DD *
 (source program)

12 Using COBOL at the NIH Computer Center (9/98)

5.2 Using the Binder

Note: the Binder now performs the link-editing functions previously performed by
the Linkage Editor.

The LKGO procedure performs the following functions:
�� link-edits the program to prepare a load module for execution

�� executes the load module.

The LKGO procedure provides the user with the DD statements needed to use the printer
(SYSOUT), the card punch (PUNCH), the sort/merge messages data set (SORTMSGS), verb
execution count data set (SYSCOUNT), and the COBOL debug data set (SYSDBOUT).
Users must provide their own JCL for any additional I/O units (data sets) used. Section 6.4
discusses specifying user-defined libraries with LKGO.

There must be one GO.ddname DD statement describing each data set used. DD statements
to override ddnames within the procedure must precede those for ddnames to be added to the
procedure. If more than one DD statement is being overridden, the override statements must
be in the same order as the existing DD statements in the procedure. See Batch Processing
and Utilities at NIH for a description of the format of DD statements.

Symbolic Parameters for CBL3LKGO

Required Value to be supplied

None None

Optional Value to be supplied

OPTIONS=parms Binder parameters
CORE=nnnnK Region for GO step; 4096K is the default
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The stepnames within the CBL3LKGO cataloged procedure are LOAD for the link-edit step
and GO for the run step.

Using COBOL at the NIH Computer Center (9/98) 13

When a COBOL/MVS main program and its subroutines are compiled in the same job, the
main program should be compiled first unless there is a specific entry point coded in the
main COBOL/MVS program.

Example 3:
To compile the main program and execute it.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKGO
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

Example 4:
To compile the main program and execute it. The OPTIONS symbolic parameter in
the compile step requests a procedure division map and a data division map. The
OPTIONS parameter in the run step requests the Binder option XREF. The CORE
parameter supplies a larger region size for the GO step.

//stepname EXEC CBL3COMP,OPTIONS=‘LIST,MAP’
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKGO,CORE=nnnnK,OPTIONS=XREF
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)

When executing the program in a separate step such as in the CBL3LKGO procedure, only
the program-defined execution parameters and LE-defined execution options may be passed.
In this case all LE-defined options are specified after the last slash. Program-defined
parameters are placed before the slash.

Example 5:
To pass the LE-defined option DEBUG using the LKGO procedure.

//stepname EXEC CBL3LKGO,
// PARM.GO=‘/DEBUG’
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)
 (data)

14 Using COBOL at the NIH Computer Center (9/98)

5.3 Creating and Using Object Modules
The OBJ procedure is used to compile source code and store the resultant object module into
a sequential data set. The output of this procedure must be processed by the Binder before it
can be run. The LKGO procedure may be used to link-edit and execute the object module(s)
created by an OBJ procedure.

Symbolic parameters for CBL3OBJ

Required Value to be supplied

NAME=‘aaaaiii.dsname’ Dsname of object module to be stored

Optional Value to be supplied

DISK=fileser Required only for a data set written to a dedicated disk
STORAGE=type Unit name for the object module; FILE is the default
OPTIONS=parms Compiler parameters
STATUS=status NEW is the default; use OLD to replace an existing

data set
SIZE=primary Primary space allocation for object module; default is

500 (enough for approximately 500 source statements)
UNITS=type Allocation units for object module; the default is

blocks of 1024 bytes

The internal stepname for the CBL3OBJ procedure is COMP.

Example 6:
To compile and save the object module.

//stepname EXEC CBL3OBJ,NAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
 (source program)

Example 7:
To compile and save into an existing data set. Former contents will be destroyed.

//stepname EXEC CBL3OBJ,STATUS=OLD,
// NAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
 (source program)

Example 8:

Using COBOL at the NIH Computer Center (9/98) 15

To compile and save overriding the default for primary space allocation. If there are
more than 500 source statements, the ‘primary’ value should be roughly equal to the
number of statements in the program.

//stepname EXEC CBL3OBJ,SIZE=primary,
// NAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
 (source program)

To execute a program which has been stored by an OBJ procedure, use the CBL3LKGO
procedure. The user must supply a //LOAD.SYSLIN DD statement describing the data set
containing the program which was compiled and saved.

Example 9:
To compile, save the object module, link-edit, and run. The object module saved as
“aaaaiii.dsname1” from the OBJ procedure is used as input for the link-edit step.

//stepname EXEC CBL3OBJ,NAME=‘aaaaiii.dsname1’
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKGO
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

16 Using COBOL at the NIH Computer Center (9/98)

Example 10:
To execute a main program and subroutines which have been created as separate data
sets by the OBJ procedure. The user must supply a DD statement for each data set
that contains a program or subroutine and insure that the main program is defined
first.

//stepname EXEC CBL3LKGO
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,
// DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR
// DD DSN=aaaaiii.dsname3,DISP=SHR
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

Example 11:
To execute a program where the main program is to be compiled and the subroutines
have been stored by the OBJ procedure in two data sets. These data sets will be
concatenated with the data set created by the COMP step.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKGO
//LOAD.SYSLIN DD
// DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

5.4 Using the Loader
The LDGO procedure combines the link-edit and run steps into one. The Loader will accept
object modules and load modules. It will also search libraries defined by the SYSLIB DD
statement within the procedure if unresolved external references remain after processing the
primary input defined by the SYSLIN DD statement within the procedure. DD statements are
provided for use of the printer (SYSPRINT and SYSOUT), the card punch (PUNCH), the
verb execution count data set (SYSCOUNT), and the sort/merge messages data set
(SORTMSGS).

The LDGO procedure should be used during the early stages of program development
(debugging); it is particularly recommended for the development of small and medium-sized
programs. Using LDGO is often more economical than using LKGO, but a dump from a

Using COBOL at the NIH Computer Center (9/98) 17

LDGO run may not be sufficient to resolve a problem. If so, the job may have to be rerun
using the Binder (LKGO).

Additional technical information on the use of the Loader is given in Batch Processing and
Utilities at NIH.

Symbolic Parameters for CBL3LDGO

Required Value to be supplied

None

None

Optional Value to be supplied

OPTIONS=parms Loader and GO parameters
CORE=nnnK Region for GO step; 300K is the default
EPT=entry Entry point for main program; the default is the

value in PROGRAM-ID
IBNAME=‘aaaaiii.dsname’ Dsname of first user-defined macro library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined macro library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The procedure name is CBL3LDGO; the internal stepname is GO.

Example 12:
To compile the main program and use the Loader to execute it.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LDGO
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

When using the Loader for a program that requires execution time options, slashes are
important. The Loader procedure consists of only one step, therefore, there is only one
execute statement to pass all necessary Loader options, program-defined execution
parameters, and COBOL-defined execution options. All Loader options are specified before
the first slash; all LE-defined options are specified after the last slash.

18 Using COBOL at the NIH Computer Center (9/98)

Example 13:
To use the Loader to pass ‘WEDNESDAY’ as the value of the program-defined
parameter. The execution time option DEBUG is limited to the tracking of 40
procedure names.

//stepname EXEC CBL3LDGO,
// OPTIONS=‘/WEDNESDAY/DEBUG=(40)’
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

Example 14:
To turn the Loader MAP option off and pass ‘WEDNESDAY’ as the value of the
program-defined parameter.

//stepname EXEC CBL3LDGO,
// OPTIONS=‘NOMAP/WEDNESDAY/’
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

Using COBOL at the NIH Computer Center (9/98) 19

6 STORING AND USING PROGRAMS IN USER LIBRARIES

Note: the Binder now performs the link-editing functions previously performed by
the Linkage Editor.

The following procedures were developed to store user programs in load module form. Users
can develop and maintain their own private libraries which are partitioned data sets.

A Partitioned Data Set (PDS) is composed of one or more sequential “members”, each of
which may be accessed independently. Each member has a unique name, up to 8 characters
long, stored in a directory. The directory contains an entry for each member consisting of the
member name and a pointer to the location of the member in the data set. When a member is
deleted or replaced, only the member-name-pointer is deleted or changed. The space used by
the member cannot be reused until the data set is condensed. If there is not enough space for
a new or replacement member, or if there are no more free entries in the directory, no
members can be added. A job that attempts to add a new member to a PDS which is full
usually ABENDs with a X37 completion code. A PDS must be stored on a disk and cannot
exceed one disk pack in size.

Load modules (the output from the Binder) must be stored in PDSs. The programs may be
either fully or partially link-edited. The Binder will automatically search libraries defined by
the SYSLIB DD statement to resolve calls or references to programs that are not included in
the main input stream defined by the SYSLIN DD card. The libraries are searched in the
order they are defined. When a reference is found, no further searching is done, and the next
search begins again at the first library. If all external references and subroutine calls are
resolved, the program is fully link-edited and is, therefore, directly executable without link-
editing again. If the external references and calls are not to be resolved, the NCAL option
must be specified in the EXEC statement for the procedure used to store the program. The
program is then partially link-edited and must be reprocessed by the Binder before it can be
executed.

Executing fully resolved load modules may cost less because a link-edit step is saved every
time the program is run; however, problems may develop as a result of updates to the
computer system. Fully resolved load modules cannot take advantage of some of these
system improvements. In addition, a program may fail to run if it contains old interfaces to
system modules.

To avoid these problems, fully resolved load modules should be re-created periodically,
particularly whenever a new system release is installed. If recreating the fully resolved
modules is difficult, it may be better to keep partially resolved modules and do the final link-
edit each time the program is run.

20 Using COBOL at the NIH Computer Center (9/98)

6.1 Storing Programs in Single-Member User Libraries
The LKSM procedure is used to link-edit and store a load module (output of the Binder) into
a single-member partitioned data set (PDS). The COMP and OBJ procedures may be used to
prepare input for the LKSM procedure. A short step, executed before the link-edit step,
deletes the PDS if it already exists. Then the link-edit step creates the new data set. If the data
set does not already exist, the delete step issues a message, but does not affect later
processing. If the output library is to be created on the MSS, STORAGE=MSS must be
specified. Additionally, the symbolic parameters SIZE, UNITS and INCR must be coded
with the appropriate values for requesting space on the MSS.

The user may define two private call libraries for resolving external references. They are
searched in their order of concatenation; if members with duplicate names exist, the first one
found will be selected. The private libraries are searched after the COBOL/MVS language
library and before NIH.UTILITY.

Symbolic Parameters for CBL3LKSM

Required Value to be supplied

NAME=‘aaaaiii.dsname’ Dsname of PDS to receive load module

Optional Value to be supplied

DISK=fileser Volume for PDS; required only if the data set is not

cataloged
STORAGE=type Unit name for PDS; FILE is the default
OPTIONS=parms Binder parameters
PROGRAM=progname Member name for load module; the default is MAIN
SIZE=primary Primary space allocation for load module; the default

is 100 units
UNITS=type Allocation units for load module; the default is blocks

of 1024 bytes
INCR=secondary Number of units in each secondary allocation; the

default is 12
STEPEND=disp Disposition for the load module; the default is KEEP
UNUSED= Nullifying causes retention of unused space; the

default is RLSE
INDEX=blocks Number of directory blocks for load module PDS; the

default is 1
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged

Using COBOL at the NIH Computer Center (9/98) 21

ALTSTOR=type Unit name for second library; FILE is the default

The internal stepnames for the CBL3LKSM procedure are SCRATCH, for the step to scratch
the data set if it already exists, and LOAD, for the link-edit step.

Example 15:
To compile, fully link-edit, and store a program into a single-member PDS.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKSM,NAME=‘aaaaiii.dsname’

Example 16:
To compile, fully link-edit, and store a program, overriding the default space
allocation. If the program requires more than the default space allocation, the SIZE
parameter should be used. The default SIZE parameter allows the user to obtain at
least 10 tracks for the load module (unneeded space is released).

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKSM,NAME=‘aaaaiii.dsname’,
// SIZE=primary

Example 17:
To fully link-edit, and store a main program and subroutines using input from the
OBJ procedure. The user must supply a DD statement for each data set that contains a
program or subroutine and insure that the main program is defined first.

//stepname EXEC CBL3LKSM,NAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR
// DD DSN=aaaaiii.dsname3,DISP=SHR

22 Using COBOL at the NIH Computer Center (9/98)

Example 18:
To compile a main program (CBL3COMP), link-edit using subroutines previously
compiled with the OBJ procedure, and create a fully resolved single-member load
module (CBL3LKSM).

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKSM,NAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD
// DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR

6.2 Storing Programs In Multi-Member User Libraries
The procedures described below enable the user to add programs to multi-member
partitioned data sets and execute them. Before using these procedures, refer to the manual
Batch Processing and Utilities at NIH for information on how to establish and maintain
partitioned data sets. These procedures differ from the OBJ and LKSM procedures in that
many programs can be stored in one data set. The OBJ and LKSM procedures store only one
program in a data set.

The LKMM procedure adds a program to a private partitioned data set. If the program name
already exists in the data set, it will be replaced. The Binder input is the same as for the
LKGO procedure.

 The user may define two private call libraries for resolving external references. They are
searched in their order of concatenation; if members with duplicate names exist, the first one
found will be selected. The private libraries are searched after the COBOL/MVS language
library and before NIH.UTILITY. If no libraries are to be searched (no external references
are to be resolved), OPTIONS=NCAL must be specified for the LKMM step; this creates a
partially link-edited load module.

Symbolic Parameters for CBL3LKMM

Required Value to be supplied

NAME=‘aaaaiii.dsname’ Dsname of PDS to receive load module
PROGRAM=progname Program name; member name in PDS

Optional Value to be supplied

DISK=fileser Volume for PDS; required only if the data set is not

cataloged
STORAGE=type Unit name for PDS; FILE is the default
OPTIONS=parms Binder parameters

Using COBOL at the NIH Computer Center (9/98) 23

LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set is

not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The stepname within the CBL3LKMM cataloged procedure is LOAD.

Example 19:
To create a multi-member PDS on a FILE volume and then compile and add a
partially link-edited program to the PDS. The program must be fully link-edited along
with all of its subroutines, as shown in the next example, before it is executed.

// EXEC PGM=IEFBR14
//NEWPDS DD DSN=aaaaiii.dsname,DISP=(NEW,CATLG),
// UNIT=FILE,SPACE=(TRK,(10,2,3))
//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKMM,NAME=‘aaaaiii.dsname’,
// PROGRAM=progname,OPTIONS=NCAL

Example 20:
To fully link-edit and add a program to a cataloged PDS where one or more of the
routines is being compiled. The same PDS is used to resolve external references;
therefore, LIBNAME and NAME refer to the same data set.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKMM,LIBNAME=‘aaaaiii.dsname’,
// NAME=‘aaaaiii.dsname’,PROGRAM=progname
//LOAD.SYSLIN DD
// DD *
 INCLUDE SYSLIB(main program name)
 ENTRY entryname

The INCLUDE and ENTRY cards are control statements to the Binder. They always begin
after column 1. The INCLUDE statement is used to define as input to the Binder modules
that would not automatically be brought in. The ENTRY statement indicates the starting
point of the program.

24 Using COBOL at the NIH Computer Center (9/98)

These control statements and the two preceding DD statements are not needed in this
example if the main program is one of the routines being compiled. In general, the ENTRY
statement is not needed for COBOL/MVS if the main program is the first input to the Binder
or if it is in object module form.

Example 21:
To fully link-edit and add a program to a PDS, where the main program and its subroutines
were previously stored in the same PDS as partially link-edited load modules. If ‘progname’
and ‘main progname’ are the same, the partially link-edited main program will be replaced.

//stepname CBL3LKMM,NAME=‘aaaaiii.dsname’,
// PROGRAM=progname,
// LIBNAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD *
 INCLUDE SYSLIB(main progname)

Example 22:
To link-edit and execute a program where the main program and some subroutines are in two
separate PDSs and other subroutines are being compiled.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
/*
//stepname EXEC CBL3LKGO,
// LIBNAME=‘aaaaiii.dsname1’,
// ALTNAME=‘aaaaiii.dsname2’
//LOAD.SYSLIN DD
// DD *
 INCLUDE SYSLIB(main program name)
 ENTRY entryname
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

6.3 Using Programs from User Libraries
The CALL procedure is used to execute a fully link-edited program. This procedure provides
the user with the DD statements needed to use the printer (SYSOUT), the card punch
(PUNCH), the verb execution count data set (SYSCOUNT), the sort/merge messages data set
(SORTMSGS), and the COBOL debug data set (SYSDBOUT). These DD statements are the
same ones supplied in the CBL3LKGO procedure. The user must supply any additional DD
statements required for proper execution of the program.

Using COBOL at the NIH Computer Center (9/98) 25

Symbolic Parameters for CBL3CALL

Required

Value to be supplied

NAME=‘aaaaiii.dsname’ Dsname of PDS containing load module

Optional Value to be supplied

DISK=fileser Volume for PDS; required only if the data set is not
cataloged

STORAGE=type Unit name for PDS; FILE is the default
PROGRAM=progname Member name for load module; the default is MAIN
CORE=nnnnK Region for GO step; 4096K is the default

The stepname within the CBL3CALL cataloged procedure is GO.

Example 23:
To execute a program which has been previously stored by an LKSM procedure.

//stepname EXEC CBL3CALL,NAME=‘aaaaiii.dsname’
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

Example 24:
To execute a fully link-edited program stored in a PDS on the MSS.

//stepname EXEC CBL3CALL,NAME=‘aaaaiii.dsname’,
// PROGRAM=progname
//GO.ddname DD (as many as needed)
//GO.SYSIN DD * (if needed)
 (data) cards

When executing the program in a separate step such as in the CBL3CALL procedure, only
the program-defined execution parameters and LE-defined execution options may be passed.
In this case all LE-defined options are specified after the last slash.

Example 25:
To pass ‘WEDNESDAY’ as the value of the program defined parameter using the
CALL procedure.

26 Using COBOL at the NIH Computer Center (9/98)

//stepname EXEC CBL3CALL,
// NAME=‘aaaaiii.dsname’,PARM.GO=‘WEDNESDAY/’
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

6.4 Link-editing from a User Library (Using the Binder)
User-defined libraries can be specified to be searched in resolving external references. Both
the Binder and the Loader offer this facility. The symbolic parameter LIBNAME defines the
first such library. ALTNAME is available if it is necessary to define a second private library.
These private libraries are searched in their order of concatenation; if members with
duplicate names exist, the first one found will be selected. The private libraries are searched
after the COBOL/MVS language library and before NIH.UTILITY.

Symbolic Parameters for CBL3LKGO and CBL3LDGO

Required Value to be supplied

None None

Optional Value to be supplied

OPTIONS=parms Binder or Loader parameters
CORE=nnnnk Region for GO step; defaults are 4096K for LKGO

and 300K for LDGO
EPT=entry Entry point for main program (Loader only); defaults

to PROGRAM-ID value
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

Example 26:
To use the Binder when a main COBOL/MVS program is compiled and its
subroutines are stored as load modules in a private user library.

Using COBOL at the NIH Computer Center (9/98) 27

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LKGO,LIBNAME=‘aaaaiii.dsname’
//GO.ddname DD etc.

Example 27:
To use the Loader when a main COBOL/MVS program is compiled and some
subroutines are stored as load modules in a private user’s libraries.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
//stepname EXEC CBL3LDGO,
// LIBNAME=‘aaaaiii.dsname1’,
// ALTNAME=‘aaaaiii.dsname2’
//GO.ddname DD etc.

The LKGO procedure may also be used to relink-edit and execute a partially resolved load
module stored in a partitioned data set.

The examples above assume the subroutines were stored using the same names they are
called by. If these names are not the same, INCLUDE statements must be supplied for the
subroutines.

Example 28:
To link-edit and execute a main program and its subroutines which have been
partially link-edited and stored into a PDS.

//stepname EXEC CBL3LKGO,
// LIBNAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD *
 INCLUDE SYSLIB(main program name)
/*
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

28 Using COBOL at the NIH Computer Center (9/98)

Example 29:
To link-edit and execute a program where the main program and some subroutines are in two
separate PDSs and other subroutines are being compiled.

//stepname EXEC CBL3COMP
//COMP.SYSIN DD *
 (source program)
/*
//stepname EXEC CBL3LKGO,
// LIBNAME=‘aaaaiii.dsname1’,
// ALTNAME=‘aaaaiii.dsname2’
//LOAD.SYSLIN DD
// DD *
 INCLUDE SYSLIB(main program name)
 ENTRY entryname
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
 (data)

Using COBOL at the NIH Computer Center (9/98) 29

7 COBOL/MVS PROGRAMMING AND RUNNING TIPS
In addition to the pointers given below, also consult the “Programming Techniques” section
of the IBM COBOL for MVS & VM Programming Guide, SC26-4767.

7.1 Restrictions
�� The following features of COBOL/MVS cannot be used at this facility:

�� CHECKPOINT/RESTART (the RERUN clause is tolerated)

�� User label handling functions are not supported. Therefore, the label handling
format of USE is invalid. The data-mname option of the LABEL RECORDS
clause is invalid. USER-DECLARATIVE is never invoked for labeling.

�� Any COBOL/MVS instruction that causes a message to be written on the
operator’s console (e.g. DISPLAY ON CONSOLE or STOP literal).

�� COBOL/MVSM allows the SEGMENTATION feature; you will not improve storage
allocation by using it, because COBOL/MVS does not perform overlay.

�� When using the SORT verb, always use DISP=SHR in the JCL rather than DISP=OLD
for the data set SYS1.SORTLIB. Also, the following statement must be included for the
SORT/MERGE program messages if Computer Center procedures are not being used:

//stepname.SORTMSGS DD SYSOUT=A

�� COBOL/MVS Interactive DEBUG is not available.

7.2 Program Design and Efficiency
The hints in this section apply to all types of COBOL programs run at NIH.

7.2.1 File Manipulation
�� Arrange the Data Division so that the most active files are first. This is particularly

important if there are more than five files being used.

�� Group FDs by function and define files that are used together in sequence.

�� Since core is initialized to zeroes, uninitialized variables may not cause a program to
ABEND and may instead cause a program to yield incorrect results. The fact that core is
initialized to zeroes should not be depended on by the programmer to initialize data items
within the program. System software often modifies core for its own purpose that is later
used in the program’s region.

�� Whenever possible, use one OPEN statement when opening multiple files. This will
cause their buffers to be close together and improve locality of reference. Whenever
possible, use one OPEN or CLOSE statement for all files.

30 Using COBOL at the NIH Computer Center (9/98)

�� Avoid the use of SAME RECORD AREA since this causes buffers to be separated from
files not using the option.

�� Group references to DIRECT files because buffers for these files are separate from
sequential files.

�� It is a good practice to CLOSE a file after the last reference to it instead of waiting until
job-end time. This will eliminate extra paging in a case where a DCB has been paged out
and must be paged in when the data set is closed.

�� A FILE STATUS key of 92 represents a logic error in the program processing the file:
Typical logic errors include:

�� attempting to read an unopened file

�� attempting to read beyond end-of-file

�� attempting to close a closed file

�� attempting to open an opened file.
To obtain more information about the FILE STATUS key, see the IBM COBOL for MVS
& VM Programming Guide, SC26-4767.

7.2.2 Data Definition
�� Group items in WORKING-STORAGE according to their usage; items used together

should be defined together.

�� Define large tables either at the beginning or end of WORKING-STORAGE. Defining a
large table in the middle results in unnecessarily separating other items by a large span of
addresses.

�� Use VALUE clauses for initialization of WORKING-STORAGE items whenever
possible. This will provide for initialization at OBJECT time and eliminates execution
time statements and potential unnecessary paging.

�� Arrange the WORKING-STORAGE Section so that the most commonly used items are
in the first 4096 bytes.

�� Optimization and better locality of reference may be achieved by carefully selecting data
types used. For example, avoid data conversion (and use of conversion subroutines) by
comparing like items: COMP to COMP; COMP-3 to COMP-3.

�� The generated code for conversion from external decimal (PIC 9) to binary (COMP) is
particularly lengthy. Convert on a one-time basis if possible, e.g., move decimal data to a
binary field and use it multiple times. External decimal data is always converted either to
COMP or COMP-3 before it is used in an arithmetic operation.

�� Always give COMP-3 items an uneven PICTURE length. An even PICTURE will cause
an extra instruction to be generated.

�� Define items used as counters as COMP, to avoid use of conversion routines.

Using COBOL at the NIH Computer Center (9/98) 31

�� Use one-byte alpha-numeric data items for all switches and flags (PICTURE X).

�� Avoid the use of figurative constants (SPACE OR ZERO) to initialize a multi-character
data field:

77 G PIC X(3).
MOVE ‘bbb’ to G.

instead of:
MOVE SPACE to G.

�� All arithmetic items should be signed.

�� If the value of a subscript is being frequently incremented without looking up a table
entry, use subscripts. If each time the subscript is incremented a value is looked up in the
table, use indexing.

7.2.3 Procedure Division
�� Avoid numeric comparison of items of unequal number of decimal places.

�� Avoid use of ON SIZE ERROR; instead, allow enough decimal places to contain the
maximum field. Also avoid use of ROUNDED if possible.

�� Use MULTIPLY instead of DIVIDE when possible:
MULTIPLY A BY .5 GIVING Q
instead of:
DIVIDE A BY 2 GIVING Q

�� Use ADD instead of MULTIPLY.

ADD A TO A
instead of:
MULTIPLY 2 BY A

�� Make all operands have the same number of decimal places for ADD and SUBTRACT

statements:

77 H PIC S9(3)V99
ADD 3.50 TO H
instead of:
ADD 3.5 TO H

�� Never multiply by ten or any multiple of ten; instead use a REDEFINES statement.

77 F PIC S9(5)V99.
77 F10 REDEFINES F PIC S9(6)V9.

32 Using COBOL at the NIH Computer Center (9/98)

�� When using IF statements put the most likely condition first in an IF/OR and the least
likely first in an IF/AND.

�� Avoid the use of NEXT SENTENCE after the ELSE option of IF statements.

�� Try not to use negative compound IF statements.

�� Avoid the use of PERFORM statements where the PERFORMed paragraph is not close
to the PERFORM statement. In-line code is better if not too large or too frequent.

�� It is better to pass a single item to a subroutine (an 01 level with several elementary
items) than to pass many individual items.

�� Use the absolute value for subscripting whenever possible. If you want the first
occurrence of TAX-REC use TAX-REC (1) instead of MOVE 1 to SUB, TAX-REC
(SUB).

�� Define numeric items used as subscripts as binary.

�� Avoid the use of multi-level subscripted or indexed tables if at all possible.

7.2.3.1 Carriage Control
�� The WRITE BEFORE ADVANCING and WRITE AFTER ADVANCING options cause

a carriage control character to be written in the first position of each record as follows:

AFTER ADVANCING ASA
BEFORE ADVANCING machine

If both BEFORE ADVANCING and AFTER ADVANCING are specified, machine
control characters are written.

7.3 Hints
�� ABENDs in Language Environment OS/390 & VM: An ABEND is still a problem of

some type and the application will be notified of such a problem. There have been some
changes in the way in which COBOL/MVS programs run. They now run in what is called
a common execution environment, the actual name is Language Environment OS/390 &
VM or LE for short. LE sets up the environment which includes acquiring memory,
handling errors, and other functions. Before OS/VS COBOL did all these functions itself,
and if it ran into a problem it simply gave the user a dump. With COBOL/MVS and LE
you actually get more explicit information. COBOL/MVS identifies the problem even
down to the statement level and notifies LE it found an application error. LE does not
ABEND like OS/VS COBOL did, however it passes back to the user a return code
indicating the application did not run as designed. In most cases a return code of U4038
will be issued. The U4038 means the application ended with a software raised or user
raised condition of severity 2 or greater. The Computer Center has set the LE parameters
to ensure a dump will be created when this happens.

Using COBOL at the NIH Computer Center (9/98) 33

�� S001 ABEND - You might not see the S001 return code, however the return code will be
something other than zero, probably U4038. Whether you get the original S001 error or
U4038 really depends on who traps the error. If COBOL identifies the error you will get
an IGZ message and a U4038 return code. If LE or maybe IMS traps the error you will
probably continue to get the S001. Either way a dump will be produced.

�� S0C7 ABEND - All programs which were converted from OS/VS COBOL must specify
the NUMPROC(MIG) compiler option. Using this option will make the COBOL/MVS
compiler generate code very similar to the old OS/VS COBOL code. Also the compiler
will use numeric techniques when comparing two data items, as was the case with OS/VS
COBOL. Two other options are available for sign processing, NUMPROC(PFD) and
NUMPROC(NOPFD). If you use either of these two options (NUMPROC(NOPFD) is
the default) with a program converted from OS/VS COBOL, some 0C7 conditions will be
bypassed. Both of these options perform logical rather than numeric comparisons and
both are performance enhancements, with NUMPROC(PFD) providing the greatest
benefit. However it is the users responsibility to ensure valid sign positions in the data
fields. Most OS/VS COBOL programs do not contain the proper numeric class test (IF
numeric ...) and depend on the S0C7 dump to catch invalid data. This is why all
programs converted from OS/VS COBOL must be compiled with the NUMPROC(MIG)
option to obtain the same results with COBOL/MVS.

�� //SYSOUT Usage by LE - LE sends error messages and report data to the //SYSOUT DD
statement. If you code a program that sends data to this same DD statement, your data
and any errors detected by LE will be in the same file.

There are 2 ways to separate the LE information from your program data:

�� Change the Select statement in the COBOL program to point to a different DD
statement and add a new DD card to the JCL.

�� LE provides users the option of changing the name changing the name of the DD
statement where errors and report information will be sent. This is accomplished
with the LE MSGFILE option. An example for the PROC CBL3CALL follows.

//iiixxx EXEC CBL3CALL......,PARM.GO=‘/MSGFILE(DDMES)’
//GO.DDMES DD SYSOUT=A

A couple of things to look out for - The “/” before the MSGFILE option indicates that
all parameters after the / are for LE and not your program. You may use any DD
name you want within the (), just make sure you also add the corresponding DD
statement.

�� In an OCCURS/DEPENDING clause, if a minimum number of occurrences is not
specified, COBOL, assumes the minimum is 1. For example, consider the following
statement:

05 VARLEN-FIELD OCCURS 5 TIMES DEPENDING ON OTHER-FIELD...

34 Using COBOL at the NIH Computer Center (9/98)

This would be the same as coding:

05 VARLEN-FIELD OCCURS 1 TO 5 TIMES DEPENDING ON
 OTHER-FIELD ...

�� DEBUG statements - If you decide to use the debug statements in your programs, simply

placing the code in the program is not enough. You must also use the run-time DEBUG
parameter. This is a LE parameter and not a program parameter. It is specified on the
program execution JCL card as follows:

// EXEC PGM=COBTEST,PARM=‘/DEBUG’

Anything before the "/" are program parameters and everything after are LE parameters.

�� FILE STATUS 39 ERRORS - The ANSI 85 standards are very strict in this area. The
Record Contains clause and the 01 Level Record must be the same as the LRECL in the
DCB. Recording mode must also agree between the FD and the actual file. Be aware the
‘ADV’ compiler option will add one byte to the output file. Also if you read data from a
TSO terminal you will need to put the LRECL on the ALLOCATE statement.

�� Execution of COBOL/MVS programs interactively - When your program begins
execution, a number of runtime modules may need to be accessed from a library called
SYS1.SCEERUN. If you try to run your program interactively you will need to allocate
this library. If you execute your program in the batch environment using the standard
NIH procedures, you should not have a problem. The SYS1.SCEERUN library is
referenced by the batch procedures.

�� The SORTCNTL DD statement allows the user to modify the order and fields of an
invoked sort dynamically at execution time. It can also be used to change or add
SORT/MERGE control statements to programs that invoke the SORT/MERGE facility
without having to recompile.

�� Whenever possible, achieve maximum blocking flexibility by obtaining DCB information
from the JCL or volume label rather than coding it directly in the program. The following
example shows how a FD designed to define a data set with a blocking factor of 77 is
modified to define a data set of any blocking factor.

specific blocksize:

FD CARD-IN

BLOCK CONTAINS 77 RECORDS
RECORD CONTAINS 80 CHARACTERS

any blocksize:

FD CARD-IN
BLOCK CONTAINS 0_/ RECORDS

Using COBOL at the NIH Computer Center (9/98) 35

7.4 Data Formats for Inter-Language Communication
The following figures show the ways data can be stored. The source language definitions for
each data type are given under the COBOL, FORTRAN, and PL/I headings. For more
specific information on data formats, consult the appropriate language manuals and the IBM
manual ESA/390 Principles of Operation, SA22-7201.

The “MACHINE DATA FORMAT” column in the figures below shows a bit breakdown of
the data type as stored internally. Bit positions are written vertically under the machine data
format symbols they refer to.

CHARACTER

COBOL FORTRAN PL/I TYPE
PIC X(n)
DISPLAY

1<=n<=32767

CHARACTER*n

1<=n<=3267

CHAR(n)

1<=n<=32767

Length =
n bytes

MACHINE DATA FORMAT EXAMPLE

Char 1 Char 2 …

Char n Value Internal hex
representation

0 0
 -
0 7

0 1
 -
8 5

 ABCD C1C2C3C4

Figure 2. Character Formats for Inter-Language Communication

FIXED POINT
The fixed point two-word data type, which is available only in COBOL, is simulated through
software and requires all data items to be aligned on a word boundary.

The “Range” given in the table indicates the minimum and maximum values numbers can
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers
in some cases even though they are represented the same internally.

Assumed decimal points in COBOL and PL/I are not shown in the table. They are stored in
the same way as other numbers; instructions generated by the compilers keep track of the
position of the assumed decimal point.

36 Using COBOL at the NIH Computer Center (9/98)

COBOL FORTRAN PL/I TYPE
PIC S9(1-4)

COMP
(or COMP-4)

Range:

-9999 to 9999

INTEGER*2

Range:

-32768 to 32767

FIXED BIN
(1-15,0)

Range:

-32768 to 32767

Halfword

Length = 2 bytes.

PIC S9(5-9)
COMP

(or COMP-4)

Range:
-(9)9s to +(9)9s

INTEGER*4

Range:
-2147483648 to

2147483647

FIXED BIN
16-31,0)

Range:

-2147483648 to
2147483647

Fullword

Length =4 bytes.

PIC S9(10-18)
COMP

(or COMP-4)

Range:
-(18)9s to +(18)9s

Two-word

Length = 8 bytes.

Figure 3. Fixed Point Formats for Inter-Language Communication

MACHINE DATA FORMAT EXAMPLES

0 0 - 1
0 1 5 Halfword

Value

+1234
-1234

Internal hex
representation

04D2
FB2E

0 0 - 3
0 1 1 Fullword

+1234

-1234

000004D2

FFFFFB2E

0 0 - 6
0 1 3

Two-word

+1234

-1234

0…04D2

F...FB2E

“S” is a binary sign bit: 0 is positive; 1 is negative.
“I” is a 15, 31, or 63 bit integer.
Figure 4 (Continued)

S I

S I

S I

Using COBOL at the NIH Computer Center (9/98) 37

FLOATING POINT
Magnitude is the range of a number expressed in powers of ten.

Although the numbers are represented the same internally, peculiarities in languages reduce
the precision of numbers in some cases. The degree of precision given in the table is good in
all cases. Fractional precisions occur because of the difference between the decimal
representation and the machine’s internal storage of numbers.

COBOL FORTRAN PL/I TYPE
COMP-1

Magnitude:
10**-78 to 10**75
Precision:

7.2 digits

REAL*4

Magnitude:
10**-78 to 10**75
Precision:

7.2 digits

FLOAT
DEC(1-6)

Magnitude:
10**-78 to 10**75
Precision:

 6 digits

Short

Length = 4 bytes

COMP-2

Magnitude:
10**-78 to 10**75
Precision:

16 digits

REAL*8

Magnitude:
10**-78 to 10**75
Precision:

16.8 digits

FLOAT
DEC(7-16)

Magnitude:
10**-78 to 10**75
Precision:

 16 digits

Long

Length = 8 bytes

REAL*16

Magnitude:
10**-78 to 10**75
Precision:

35 digits

FLOAT
DEC(17-33)

Magnitude:
10**-78 to 10**75
Precision:

 33 digits

Extended

Length = 16 bytes

Figure 4. Floating Point Formats for Inter-Language Communication

38 Using COBOL at the NIH Computer Center (9/98)

MACHINE DATA FORMAT EXAMPLES

0 0-0 0 - 3
0 1 7 8 1

Short

Value

+1234

-1234

Internal hex
representation

434D2000

C34D2000

0 0-0 0 - 6
0 1 7 8 3

Long

+1234

-1234

434D20…0

C34D20…0

0 0-0 0 - 6
0 1 7 8 3

0 - 0 0 6
0 7 8 3

Extended

+1234

-1234

434D20…0

C34D20…0

“S” is a binary sign bit: 0 is positive; 1 is negative.
“E” is a seven bit exponent with a value between hex 16** -64 and 16** +63.
“F” is a fraction, which may be 24, 56, or 112 bits long.
Figure 4 (Continued)

S E F

S E F

S E F

F (continued)

Using COBOL at the NIH Computer Center (9/98) 39

ZONED DECIMAL
The “Range” given in the table indicates the minimum and maximum values numbers can
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers
in some cases even though they are represented the same internally.

COBOL FORTRAN PL/I TYPE
PIC 9(n)

DISPLAY

1<=n<=18

Range: 0 to (18)9s

PIC ‘(n)9’

1<=n<=15

Range: 0 to (15)9s

Unsigned

Length = n bytes.

PIC S9(n)
DISPLAY

1<=n<=18

Range:
-(18)9s to +(18)9s

PIC ‘(n-1)9T’

1<=n<=15

Range:
-(15)9s to +(15)9s

Signed

Length = n bytes.

MACHINE DATA FORMAT EXAMPLES

0-0 0-0 0-1 1-1
0 3 4 7 8 1 2 5

Unsigned

Value

1234

Internal hex
representation

F1F2F3F4

0-0 0-0 0-1 1-1
0 3 4 7 8 1 2 5

Signed

+1234

-1234

F1F2F3C4

F1F2F3D4

“Z” is a 4 bit zone code with a value of hex F.
“D” is a 4 bit binary decimal number with a value between hex 0 and 9.
“Si” is a 4 bit sign code: A, C, E, and F are positive; B and D are negative.

Figure 5. Zoned Decimal Formats for Inter-Language Communication

 Z D Z D …

 Z D Z D …

 Z D

 Si D

40 Using COBOL at the NIH Computer Center (9/98)

PACKED DECIMAL
The “Range” given in the table indicates the minimum and maximum values numbers can
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers
in some cases even though they are represented the same internally.

COBOL FORTRAN PL/I TYPE
COMP-3
PIC 9(n)

1<=n<=18

Range: -(18)9s to

+(18)9s

FIXED
DEC(n)

1<=n<=15

Range: -(15)9s to

+(15)9s

Length in

bytes = (n+1)/2
rounded up.

MACHINE DATA FORMAT EXAMPLES

0-0 0-0

0 3 4 7

Value

-1234

-1234

Internal hex
representation

01234C

01234D

“D” is a 4 bit binary decimal number with a value hex 0 through 9.
“Si” is a 4 bit sign code: A, C, E, and F are positive; B and D are negative.

Figure 6. Packed Decimal Formats for Inter-Language Communication

D D … D Si

Using COBOL at the NIH Computer Center (9/98) 41

INDEX

ABENDs

FILE STATUS 39 Error, 34
LE, 32
NUMPROC compiler option, 33
S001 ABEND, 32
S0C7 ABEND, 33
U4038, 32
X37 from COBOL, 19

Binder, 12, 19
CALL procedure, 24
carriage control hints, 32
CBL3CALL procedure, 24
CBL3COMP procedure, 11
CBL3LDGO procedure, 16
CBL3LKGO procedure, 12, 15, 26
CBL3LKMM procedure, 22
CBL3LKSM procedure, 20
CBL3OBJ procedure, 13
character data, 35
charges

reducing CPU time, 29
coding techniques, 29
COMP procedure, 11
compiler options

changing, 9
defaults, 7

compiling and running, 11
compiling programs, 11
CPU time

reducing, 29
data definition hints, 30
data formats, 35
data types

character, 35
fixed point, 35
floating point, 37
packed decimal, 40
zoned decimal, 39

DD statements
SORTCNTL, 34

DD statements needed, 12
DEBUG statement, 34
defaults, 7
defining private libraries, 22

documentation. See publications
efficiency of programs, 29
electronic mail

submitting a PTR, 1
ENTER PTR, 1
ENTER PUBWARE, 5
ENTRY statement, 23
figures

character formats for inter-language
communication, 35

fixed point formats for inter-language
communication, 36

floating point formats for inter-
language communication, 37

SYSOUT DCB information for
COBOL/MVS procedures, 4

zoned decimal formats for inter-
language communication, 39

file manipulation, 29
FILE STATUS 39 Error, 34
FIPS standard

COBOL, 2
fixed point data, 35
floating point, 37
INCLUDE statement, 23, 27
interactive program execution, 34
inter-language communications, 35
introduction, 1
LDGO procedure, 16
level of support, 1
libraries

private, 26
LKGO procedure, 12, 15, 26
LKMM procedure, 22
LKSM procedure, 20
load module storage, 19
load modules

recreate periodically, 19
multi-member libraries, 22
NUMPROC compiler option, 33
OBJ procedure, 13
OCCURS/DEPENDING clause, 33
overriding procedures, 12
packed decimal, 40

42 Using COBOL at the NIH Computer Center (9/98)

packed decimal formats for inter-
language communication, 40

PDS
multi-member for programs, 22
single member for load module, 20
use explained, 19

performance
improving, 29

private libraries, 22
private libraries for load modules, 19
procedure division hints, 31
procedure functions, 2
procedure names, 2
programming tips, 29
PTR, 1
publications, 5

ordering, 5
PUBWARE, 5
restricted features, 29
restrictions

on COBOL, 29
running programs, 11
saving CPU time, 29
savings with load modules, 19
single member libraries, 20
software

improving efficiency, 29
SORTCNTL DD statement, 34
standards

FIPS, 2
support, 1
SYSOUT blocksizes, 4
SYSOUT DCB information for

COBOL/MVS procedures, 4
SYSOUT record formats, 4
Technical Information Office, 5
U4038 return code, 33
World Wide Web

PTR submission, 1
publication ordering, 5
publications online, 5

WYLBUR
ENTER PUBWARE, 5

X37 ABEND, 19
zoned decimal data, 39

Using COBOL at the NIH Computer Center (9/98) 43

Using COBOL at the NIH Computer Center

Document Evaluation
Is the Manual:
 YES NO

 Clear?

 Well organized?

 Complete?

 Accurate?

 Suitable for the beginner?

 Suitable for the advanced user?

Comments:

��
��
��
��
��
��
��

Please give page references where appropriate. If you wish a reply, include your
name and mailing address.

 Send to: Application Services Branch
 Division of Computer System Services, CIT
 National Institutes of Health
 Building 12A, Room 4011
 Bethesda, MD 20892-5607

 FAX to: (301) 496-6905

ICD or Agency:
Date Submitted:
Name (Optional):
E-Mail Address: manual revised: 9/98

